
The FedoraLiveCD Project allows anyone to create a custom
bootable CD or PXE boot image with little effort. For large HPC
systems, this greatly simplifies the creation of diskless compute
nodes, leading to higher reliability and lower costs when
designing your cluster environment. The network and CPU
overhead for a diskless setup are minimal, and the compute

nodes will run entirely from an initial ramdisk, so they will
exhibit very good I/O for normal OS disk operations.

The cluster I’ve designed is set up for MPI-based computation.
The master node runs a queue system where jobs can be submitted
and farmed out to the compute nodes to run within the allotted
resources. Because my compute nodes are diskless, the goal is to

6 4 | august 2011 www.l inux journa l .com

INDEPTH

How to Build a Beowulf
HPC System Using the
FedoraLiveCD Project
Build a Beowulf cluster without disks to optimize cost and reliability,
and simplify software maintenance. HOWARD POWELL

Listing 1. Example dhcpd.conf File

#

DHCP Server Configuration file.

see /usr/share/doc/dhcp*/dhcpd.conf.sample

#

ddns-update-style interim;

allow booting;

allow bootp;

option dns-domain-search-list code 119 = string;

subnet 10.0.0.0 netmask 255.255.0.0 {

default-lease-time 604800;

max-lease-time 1209600;

option routers 10.0.0.1;

option ip-forwarding off;

option subnet-mask 255.255.0.0;

range dynamic-bootp 10.0.0.100 10.0.0.254;

}

subnet 10.1.0.0 netmask 255.255.0.0 {

default-lease-time 604800;

max-lease-time 1209600;

option routers 10.1.0.1;

option ip-forwarding off;

option ntp-servers 10.1.0.1;

option subnet-mask 255.255.0.0;

option domain-name-servers 10.1.0.1;

option time-offset -5;

option domain-name "cluster";

option interface-mtu 9000;

}

class "pxeclients" {

match if substring(option vendor-class-identifier, 0, 9) =

!"PXEClient";

next-server 10.1.0.1;

filename "pxelinux.0";

}

host c0 {

hardware ethernet A4:BA:DB:1E:71:2D;

fixed-address 10.1.0.254;

option host-name "c0";

}

host c1 {

hardware ethernet A4:BA:DB:1E:71:3A;

fixed-address 10.1.0.253;

option host-name "c1";

}

host c2 {

hardware ethernet A4:BA:DB:1E:71:47;

fixed-address 10.1.0.252;

option host-name "c2";

}

host c3 {

hardware ethernet A4:BA:DB:1E:71:54;

fixed-address 10.1.0.251;

option host-name "c3";

}

produce a simple and streamlined operating system with as few
libraries and utilities as necessary to get the nodes to interact with
the master job scheduler. Software that is needed by jobs (such as
the MPI libraries) can be shared via NFS from the master node. The
compute nodes simply have a kernel and the basic libraries needed
to start a job. User account information can be shared via a local
LDAP service running on the master node or by any method you
already may have available in your environment.

To prepare a diskless cluster, your master node will need some
amount of reasonably fast local disk storage and at least 10/100
Ethernet, preferably gigabit Ethernet. Your diskless nodes will need
Ethernet hardware that can PXE boot from a network interface; most
modern hardware supports this. These nodes will need to be on the
same physical subnet, or you will have to configure your dhcpd service
to respond or relay between subnets. Your diskless nodes also should
have sufficient physical memory (RAM) to hold the OS image plus
have enough room to run your programs—a few gigabytes of RAM
should be sufficient if you keep your OS image simple.

For the rest of this article, I assume your cluster is based on a Red
Hat-derived distribution, as this is based on a Fedora-specific tool. I’m
going to demonstrate an environment where all of the cluster nodes
can communicate with the master on a private Ethernet subnet.

Your boot server needs to run just two services for diskless
booting: DHCP and TFTP. DNSMasq can be substituted for DHCP
and TFTP, but I demonstrate using separate DHCP and TFTP services
because that’s how I set up my own cluster. For convenience, you
may choose to install bind or some other DNS to make communi-
cation between nodes more friendly. To deploy custom rpm files
quickly, you may want to have access to a local repository shared
via Apache or another Web service. Local rpm repositories also are
a viable method to deploy custom rpm files.

First, install DHCP via yum:

yum -y install dhcp tftp-server syslinux

The file /etc/dhcpd.conf should be created, and in this config
file, you need to define your subnet and a pxeclients class that
simply locates the bootable pxelinux image on disk. You also need

Advertiser Index

ATTENTION ADVERTISERS

November 2011 Issue #211 Deadlines
Space Close: August 22; Material Close: August 30

Theme: Hack This

BONUS DISTRIBUTIONS:
Utah Open Source, USENIX OSDI, SHAREPOINT

Contact Joseph Krack, +1-713-344-1956 ext. 118,
joseph@linuxjournal.com

Advertiser URL Page #

CHECK OUT OUR BUYER'S GUIDE ON-LINE.
Go to www.linuxjournal.com/buyersguide where you can learn
more about our advertisers or link directly to their Web sites.

Thank you as always for supporting our advertisers by buying
their products!

1&1 INTERNET INC. www.oneandone.com 1

ABERDEEN, LLC www.aberdeeninc.com C3

ARCHIE MCPHEE www.mcphee.com 79

DIGI-KEY CORPORATION www.digi-key.com 79

DRUPALCON london2011.drupal.org 27

EMAC, INC. www.emacinc.com 23

GENSTOR SYSTEMS, INC. www.genstor.com 21

HOSTINGCON/INET INTERACTIVE www.hostingcon.com 9

IXSYSTEMS, INC. www.ixsystems.com C2, 3

LINODE, LLC www.linode.com 45

LINUX JOURNAL STORE www.linuxjournalstore.com 33

LOGIC SUPPLY, INC. www.logicsupply.com 39, 61

LULLABOT www.lullabot.com 7, 63

MICROWAY, INC. www.microway.com C4, 5

OEM PRODUCTION www.polywell.com 57

OHIO LINUX FEST www.ohiolinux.org 59

POLYWELL COMPUTERS, INC. www.polywell.com 79

RACKMOUNTPRO www.rackmountpro.com 25

SILICON MECHANICS www.siliconmechanics.com 18, 19, 53

TECHNOLOGIC SYSTEMS www.embeddedx86.com 13

USENIX SECURITY SYMPOSIUM www.usenix.org/sec11/lj 47

UTILIKILTS www.utilikilts.com 79

www. l inux journa l .com august 2011 | 6 5

Listing 2. Example tftp File

service tftp

{

socket_type = dgram

protocol = udp

wait = yes

user = root

server = /usr/sbin/in.tftpd

server_args = -s /tftpboot

disable = no

bind = 10.1.0.1

per_source = 11

cps = 100 2

flags = IPv4

}

6 6 | august 2011 www.l inux journa l .com

INDEPTH

Listing 3. Example nodes-ks.cfg

System language

lang en_US.UTF-8

System keyboard

keyboard us

System timezone

timezone America/New_York

Root password

rootpw abcd1234

System authorization information

auth --useshadow --enablecache

Firewall configuration

Firewalls are not necessary in a cluster, usually

firewall --disabled

Disables Selinux

selinux --disable

Repositories

repo --name=Your-Custom-Repo --baseurl=

http://your.custom.repo/

repo --name=base --baseurl=

http://mirror.centos.org/centos/5/os\$basearch/

repo --name=newrepo --baseurl=file:///tmp/localrepo

Enable and disable some services

services --enabled=gpm,ipmi,ntpd --disabled=nfs

Package install information

%packages

bash

kernel

syslinux

passwd

policycoreutils

chkconfig

authconfig

rootfiles

comps-extras

xkeyboard-config

nscd

nss_ldap

autofs

gpm

ntp

compat-gcc-34-g77

compat-libf2c-34

compat-libstdc++-296

compat-libstdc++-33

dapl

dapl-utils

dhcp

dmidecode

hwloc

iscsi-initiator-utils

libXinerama

libXmu

libXpm

libXp

libXt

man

mesa-libGL

nfs-utils

openssh

openssh-clients

openssh-server

pciutils

sysklogd

tvflash

vim-minimal

vim-enhanced

Pre-install scripts

Post-install scripts

%post

Here you can run any shell commands you wish to

further customize your nodes.

Sets up DHCP networking on the compute nodes

cat << EOF > ifcfg-eth0

DEVICE=eth0

BOOTPROTO=dhcp

ONBOOT=yes

MTU=1500

EOF

mv ifcfg-eth0 /etc/sysconfig/network-scripts/ifcfg-eth0

www.l inux journa l .com august 2011 | 6 7

to define the diskless hosts definition for each node by associating
the bootable MAC address of each node with a static IP that
you define for that node. I also chose to include the host-name
option, so that my diskless hosts will know a name other than
localhost.localdomain once they are booted.

Next, you need to enable the TFTP dæmon. Red Hat
systems launch TFTP via xinetd—I simply needed to enable the
/etc/xinetd.d/tftp config file and start xinetd. If you have multiple
network interfaces on your master node, you can choose to bind
TFTP to one interface by using the bind command.

Once configured, both services should be added to the default
runlevel and started:

chkconfig dhcpd on

chkconfig xinetd on

service dhcpd start

service xinetd start

Now for the fun part—creating the OS image. RPMForge
hosts a version of the livecd-tools package, which can be
installed via yum:

yum install livecd-tools

The live CD tools require a Red Hat kickstart file—templates
can be found via Google and as part of the livecd-tools package. A
template kickstart is generated by anaconda on any freshly installed
system in the root home directory as /root/anaconda-ks.cfg.

Of particular interest here are the %packages and the %post
sections. In %packages, you can choose exactly which programs
you need or want installed on the initial ramdisk image and avail-
able to the OS at boot. I recommend choosing as little as you can
in order to keep the initrd small and streamlined. In %post, you
can add any shell commands you need in order to customize your
compute nodes further—for example, by editing config files for
needed services. The example kickstart provided here works with
a RHEL- or CentOS 5.5-based distribution.

If you review my example kickstart file, you’ll notice that I’ve
specified DHCP as the boot protocol for the network on each of
the compute nodes. Because the dhcpd service already knows
about the Ethernet MAC address of my diskless compute nodes,
the nodes simply will re-request an IP address during boot and be
reassigned the same one. Remember that no unique information
is stored on the node’s OS image, so using DHCP is the easiest
way to assign IPs to each diskless node.

One special situation to note: because the compute nodes are
diskless, each time SSH starts on a node, it generates a new set of
host keys. When the node reboots, it generates a new set of different
keys, leading to an impossible-to-maintain situation for SSH users. To

solve this, I have generated a template host key that I then deploy
copies of to each of my diskless compute nodes via an rpm file. To
build your own version of this rpm, you need to create a spec file
(see the example) and copy the host keys from /etc/ssh to the location
specified by BuildRoot in the spec file. The rpmbuild command gener-
ates the rpm, and this rpm can be included in a local yum repository
by specifying its name to the %packages section of your kickstart:

rpmbuild -bb sshkeys.spec

By setting up SSH with the same host key on each node,
I’ve defeated some of the security of SSH by allowing the
possibility of man-in-the-middle attacks between my master
node and compute nodes. However, in my cluster environment
where compute nodes communicate on a private and dedicat-
ed channel and do not have a direct connection to the outside

INDEPTH

If you have multiple network interfaces
on your master node, you can choose
to bind TFTP to one interface by using
the bind command.

Listing 4. Example cluster-ssh-keys.spec

%define name cluster-ssh-keys

%define version 1.0

%define release 1

Summary: ssh keys for cluster compute nodes

Name: %{name}

Version: %{version}

Release: %{release}

Group: System Environment/Base

License: GPL

BuildArch: noarch

BuildRoot: %{_builddir}

URL: http://your.custom.url

Distribution: whatever

Vendor: You

Packager: your email

%description

This provides the ssh keys necessary for compute

nodes on a diskless cluster.

%prep

exit 0

%build

exit 0

%install

exit 0

%clean

exit 0

%files

%defattr(-,root,root)

/etc/ssh

6 8 | august 2011 www.l inux journa l .com

world, this shouldn’t be a problem.
Another idea that might simplify your SSH environment is

to consider enabling host-based SSH authentication (so users
don’t have to generate private and public keys while on your

cluster). The root SSH environment is hardened against SSH
host-based authentication, so you’ll either have to work
around this security measure or set up SSH public/private key-
chains for the root account on your new cluster. Normal users
should have no problems with host-based SSH authentication,
so long as the UIDs are common among the entire cluster.

Once your kickstart has been customized to your liking,
the rest of the setup is simple. Just run the livecd-creator
script to generate an ISO image, then use the livecd-isto-to-pxe
script to convert that into something TFTP can use.

When compiling the OS image, some active dæmons may
interfere with the build process. Of particular note, SELinux
must be permissive or disabled, and if you use the nameserver
cache dæmon (nscd), you may need to disable it temporarily
while the build process runs or else risk a corrupted image:

setenforce 0

service nscd stop

livecd-creator --config=nodes-ks.cfg --fsla-

bel=Compute_nodes

livecd-iso-to-pxe Compute_nodes.iso

rsync -av tftpboot/ /tftpboot/

service nscd start

I’ve chosen to write all of this into a handy shell script that

creates the image and cleans up any temporary files for me.
Once the files have been copied to tftpboot, it’s time to boot

a compute node. If all goes well, the diskless client will request a
DHCP address, and your DHCP server will respond with an IP and
the location of the TFTP server and image to download. The client
then should connect to the TFTP server, download the image and
launch the OS you just created.

Problems with the PXE boot process can be diagnosed by
using any network protocol analyzer, such as Wireshark. Once the
image is loaded and the kernel is alive, you should see the normal
boot process on the screen of the diskless compute node.

As noted before, specialized user-level software (such as the MPI
libraries in my case) can be distributed to your nodes via standard
NFS shares. On your NFS server (it can be the same as your master

node), simply define a new share in /etc/exports and enable NFS:

chkconfig nfs on

service nfs start

Your nodes need to add an entry for the NFS server either to
their local fstab files or via some other method like autofs.

User home directories can be shared via NFS or via a high-
performance, cluster-based filesystem, such as PVFS2 or Lustre. NFS
is reliable when disk I/O is not very intensive or mostly read-only,
but it breaks down if your code relies heavily on large numbers of
files or heavy, simultaneous I/O operations to disk.

Please keep in mind that any customizations of the environment
on the diskless nodes are not maintained between reboots. In fact,
it’s perfectly okay to cold-reset a diskless node; the OS image cannot
be corrupted like it could be if it were on a local disk. This simplifies
troubleshooting strange node problems. If a reboot doesn’t clear
the problem (and assuming no other diskless nodes show the same
problem), it’s almost certainly a hardware bug—this alone can save
hours of time when working with a large cluster."

Howard Powell is the sole sysadmin at the University of Virginia Astronomy Department. He’s built
three generations of Linux-based high-performance computing clusters to support the Virginia
Institute of Theoretical Astronomical, which are used to study cool things like what’s happening
around black holes in our universe. He lives near Charlottesville, Virginia.

INDEPTH

Listing 5. Example mknodes.sh

#!/bin/bash

/etc/init.d/nscd stop

cd /local-disk/nodes/

livecd-creator --config=/local/nodes/nodes-ks.cfg \

--fslabel=cluster -t /local-disk/nodes/

livecd-iso-to-pxeboot /local-disk/nodes/cluster.iso

rsync -av /local-disk/nodes/tftpboot/ /tftpboot/

rm /local-disk/nodes/cluster.iso

rm -rf /local-disk/nodes/tftpboot

/etc/init.d/nscd start

Listing 6. Example exports File

/local-disk 10.0.0.0/255.0.0.0(rw,async)

Listing 7. Example fstab File

master:/local-disk /local-disk nfs _netdev 0 0

User home directories can be shared via NFS or via a high-performance,
cluster-based filesystem, such as PVFS2 or Lustre.

