
INDEPTH

104 / JUNE 2012 / WWW.LINUXJOURNAL.COM

ZFS and
Btrfs: a Quick
Introduction
to Modern
Filesystems
In this article, I explain how to install a ZFS kernel module
on Linux, create a filesystem and compare it to existing Btrfs
utilities bundled with your Linux distro. HOWARD POWELL

I am a filesystem geek. I have to be—I
run a small department and manage the
backups of about ten different mission-
critical servers. I buy hard drives by the
20-pack, several times a year. Disks are
cheap, but not always reliable, so I’ve
learned to adapt by using the latest
generation of filesystems to overcome
drive failures.

In the past, I relied on RAID hardware
(and/or software) to handle drive
redundancy and to increase performance,
but that no longer is necessary. I also
used LVM to make my storage more
flexible and easier to manage. The newer

filesystems like ZFS and Btrfs (have or will
soon) implement redundancy and internal
checking for consistency without that
extra layer of expensive RAID controllers
or slow software. They also handle pools
of storage in a fundamental way that
makes an LVM layer less useful.

The biggest concept to grasp with ZFS
and Btrfs is that ZFS and Btrfs expect
disks to be disks. The usage of expensive
hardware or slow software RAID systems
is unnecessary and conflicts with how
these filesystems expect to talk to
storage disks. You still can use hardware
RAID if you want, but you’re removing

LJ218-June2012.indd 104 5/23/12 11:44 AM

INDEPTH

WWW.LINUXJOURNAL.COM / JUNE 2012 / 105

some of the built-in safeguards that help
your filesystem prevent loss of data.

ZFS
First, I’m going to talk about ZFS. I
start with a quick overview of how to
download and install the source code for
this system on your Red Hat-compatible
OS, and help you set up a small ZFS
storage pool. Then, I provide some code
snippets you can use to create a rotating
snapshot-like backup script using ZFS’s
native snapshot capability. Assuming
you create your storage pool on multiple
disks in a mirror or RAID-Z configuration,
you will have built-in protection against
bitrot—the natural propagation of errors
in your data from misreads or writes to
disk. If you then add to your system some
off-site backups, you’ll have a pretty
good start to a robust backup solution.

The ZFS filesystem originally was
created by Sun Microsystems for its
Solaris operating system. ZFS has been
something that many Linux users have
desired for almost a decade because
of its amazing features and simple-to-
implement flexibility. Unfortunately, Sun
decided to release ZFS under the CDDL
license, which ultimately has caused
the kernel gurus never to add support
to the main Linux kernel. Some people
have ported ZFS to FUSE so that it can
run in userspace and not taint the
kernel, but this is slower than native

kernel-space access. Recently, a group at
Lawrence Livermore National Labs ported
ZFS so that it’s a separately compiled
kernel module that can be installed on
your system. (This, of course, taints
your kernel’s license.) This module is
considered to be in release candidate
state, but the core ZFS code itself is
based on the fairly stable Solaris version.

ZFS is notable because it’s a mature
implementation of a copy-on-write
filesystem. Copy-on-write (COW) means
that when your data is read (for example,
when you open a file) and then modified,
a new copy is saved to disk, and the
old copy is either re-allocated for future
use or preserved as a “snapshot” of
the current state of the filesystem.
This means that no file can ever be “in
the middle” of a write operation, so
corruption leading to long fscks are
greatly reduced.

To get started with ZFS, first you
need to download the source from
http://zfsonlinux.com. You need two
packages: the Solaris Porting Layer
(this provides the Solaris kernel APIs)
and the ZFS source.

You also need kernel-devel and a few
other packages—this should work on a
Red Hat-compatible distribution:

\XP�JURXSLQVWDOO��'HYHORSPHQW�7RROV��

\XP�LQVWDOO�]OLE�GHYHO�OLEXXLG�GHYHO�OLEEONLG�GHYHO�

 ´OLEVHOLQX[�GHYHO�SDUWHG�OVVFVL

LJ218-June2012.indd 105 5/23/12 11:44 AM

INDEPTH

106 / JUNE 2012 / WWW.LINUXJOURNAL.COM

Once the dependencies are installed,
first you should compile the Solaris Porting
Layer. You have to unzip the SPL, FG into
the directory, run ��FRQÀJXUH and PDNH�
rpms. When done, you should have XYZ
rpm files for your system, which you can
next install with your package manager.
For example, USP���8YK�
�[��B���USP
should work on a 64-bit system.

Next, you need to unzip and configure the
ZFS source directory. Again, run PDNH�USPV
and install the resulting rpm files it creates.

Once installed, you can begin creating
a filesystem. Reboot or do VHUYLFH�
]IV�VWDUW to load the modules and
prepare your system for ZFS:

]SRRO�FUHDWH�SXGGOH��GHY�VGE��GHY�VGF

(Note that ZFS can use partitions,
but if you give it a raw disk device, it
automatically will create partitions and
use the entire space effectively. This is
the best practice for ZFS.)

The above example creates a
concatenated storage pool called
“puddle”. Storage on zfs is called
“pools” or collections of disks and disk
partitions. A storage pool is roughly
analogous to the metadevices created
by mdadm or lvm. The puddle filesystem
you just created will be mounted at
/puddle and can be browsed and used
just like any other filesystem. Note the
first big change—you do not need an
entry in fstab or to mount the filesystem
manually; ZFS takes care of this for you.

A mirror (equivalent in concept to a
RAID-1) can be created with two or more
devices by using the following command:

]SRRO�FUHDWH�PLUURU�SXGGOH��GHY�VGE��GHY�VGF

Finally, a RAID-5 equivalent pool can
be created with:

]SRRO�FUHDWH�UDLG]�SXGGOH��GHY�VGE��GHY�VGF��GHY�VGG

Oh, I almost forgot—if you prefer RAID-6
instead of RAID-5, and have the disks to
throw at this, there’s a solution for you also:

]SRRO�FUHDWH�UDLG]���SXGGOH��GHY�VGE��GHY�VGF��GHY�VGG��GHY�VGH

It should take only a moment or two to
initialize the device.

You can check your new storage pool’s
status by using:

]SRRO�VWDWXV

Next, you may decide you want to
move your mounted filesystem to a
different mountpoint. You can use the
ZFS command-line utility to do this:

]IV�VHWPRXQW�SXGGOH��PQW�SXGGOH

You also can use the ZFS utility to
create new sub-pools of storage that can
be handled independently or together
with the main pool:

]IV�FUHDWH�SXGGOH�GURSOHW

LJ218-June2012.indd 106 5/23/12 11:44 AM

INDEPTH

 WWW.LINUXJOURNAL.COM / JUNE 2012 / 107

Snapshots are a very effective way to
make instantaneous same-disk backups
of your files:

]IV�VQDSVKRW�SXGGOH�GURSOHW#WRGD\

You can mount these snapshots to
copy or recover data:

PRXQW��W�]IV�SXGGOH�GURSOHW#WRGD\��PQW�

You also can list the filesystems and
snapshots, and you can see how much
disk space each is consumed by using the
zfs list command:

]IV�OLVW�SXGGOH������WKLV�ZLOO�OLVW�DOO�VXEYROXPHV�EHORZ�SXGGOH�

]IV�OLVW��W�VQDSVKRW�SXGGOH�����WKLV�ZLOO�OLVW�DOO�VQDSVKRWV�

��������������������������������RI�SXGGOH�DQG�VXEYROXPHV

Finally, maintenance of your
filesystem is vital. With ext3/4 and other
filesystems, you use fsck to make sure
your system is coherent and healthy, but
this requires you to take the filesystem
and/or machine off-line, and it could
take hours to check a large multi-
terabyte disk. With ZFS, file “scrubbing”
happens on-line while the system is
active and available for use. Scrubbing
scans through every file and makes sure
that the internal checksums are still
valid and correct. If you have redundant
storage (a RAID-Z or a mirror), the
filesystem will be self-healing and your
data will be fixed automatically if any

filesystem problems are detected:

]SRRO�VFUXE�SXGGOH

Much like fsck, a scrub operation can
take a few hours, but the big difference
is that your system remains on-line and
ready for use! Go ahead and work with
your system; you will not cause the
scrub operation any problems.

Technically, a scrub of each file
happens automatically every time that
file is opened. The above scrub command
will check every file on that storage pool,

LJ218-June2012.indd 107 5/23/12 11:44 AM

INDEPTH

108 / JUNE 2012 / WWW.LINUXJOURNAL.COM

and best practices suggest the scrub
command should be run periodically to
check files that are rarely accessed.

Okay, now for a few code snippets to
show you how you can use ZFS to your
advantage for backups:

]IV�OLVW��+��U��G���W�VQDSVKRW�SXGGOH

This snippet lists, in chronological
order, all of the snapshots for your pool.

You easily can modify it to show just
a sub-pool:

]IV�OLVW��+��U��G���W�VQDSVKRW�SXGGOH�GURSOHW

If you feed that to a KHDG���
command, you instantly have the oldest
snapshot on your system. You can use
your favorite shell-fu commands to
decide whether to keep or delete the
old snapshot by:

]IV�GHVWUR\�SXGGOH�GURSOHW#WRGD\

Let’s say you’re copying /home to
/puddle once a day, and you now have
five days’ worth of snapshots. You want
only the last five days of backups, so
let’s write a script to delete the oldest
snapshot, rsync /home to /puddle, and
create a new snapshot:

2/'(67 C]IV�OLVW��+��U��G���W�VQDSVKRW�SXGGOH_KHDG���C�

]IV�GHVWUR\��^2/'(67`�

UV\QF��DY���GHOHWH��KRPH��SXGGOH�

]IV�VQDSVKRW�SXGGOH#
GDWH���<�P�G��+��0��6

And there you go—with as few as four
lines of code, you have a rotating backup
script for your data.

For those of you real ly interested
in learning about ZFS, remember
that it ’s a mature f i lesystem that’s
been around for almost a decade and
heavi ly developed and invested in
by many organizations, notably Sun
and Oracle. Only the Linux kernel
module implementation is new, so
if you already have a ZFS f i lesystem
created on a BSD UNIX or on Solaris,
you easi ly can import it into your
Linux system or vice versa. The Linux
module is being actively maintained
and updated periodical ly.

There is a lot of great documentation
on-line about ZFS, but one of the best
documents for people investigating
using ZFS in a real environment is
the ZFS Best Practices Guide, which
references Solaris heavily, but don’t let
that scare you away (see Resources).

Btrfs
Now, some people may prefer to
avoid downloading source code and
compiling their own kernel modules
(even though it’s trivial to do so on
a standard distribution these days).
For these people, Btrfs (B-tree File
System) is a GPL-licensed copy-on-
write filesystem already included in
most Linux distributions. Btrfs still is
undergoing heavy development, and
many features, such as parity-based

LJ218-June2012.indd 108 5/23/12 11:44 AM

INDEPTH

WWW.LINUXJOURNAL.COM / JUNE 2012 / 109

RAID, aren’t yet complete.
Btrfs modules already should be

installed as part of modern kernels (I
can confirm it’s in RHEL 6.0 and above).
You need to install the btrfs-progs
package to create a fi lesystem and
work with it:

\XP�LQVWDOO�EWUIV�SURJV

Now, you can create the fi lesystem
on a second, unused partition (sdf1)
and assign it a label:

PNIV�EWUIV��/�ORFDO��GHY�VGI�

To pool two or more devices together:

PNIV�EWUIV��/�ORFDO��GHY�VGI���GHY�VGJ�

To create a mirrored filesystem for your
data on two or more devices:

PNIV�EWUIV��/�ORFDO��G�UDLG���GHY�VGI���GHY�VGJ�

With Btrfs, you need to create an
entry in /etc/fstab. You could use
“LABEL=/local” with the above example,
but because RHEL 6 prefers UUIDs instead
of labels, you can discover the UUID and
use it instead with btrfs-show:

EWUIV�ÀOHV\VWHP�VKRZ��ORFDO

Now you can add it to the fstab, such as:

88,' >VRPHWKLQJ�KHUH@������ORFDO��������EWUIV���GHIDXOWV�������

Finally, to mount the disk, just run
the mount command. If you want to
relocate the fi lesystem to a different
mountpoint, update fstab and remount
the fi lesystem.

To create a snapshot of a Btrfs mount:

EWUIV�VXEYROXPH�VQDSVKRW��ORFDO��ORFDO�VQDSVKRW

The snapshot is mounted automatically
at /local/snapshot. You cannot mount
these snapshots outside of the Btrfs
tree—they have to be subvolumes of
your main Btrfs mountpoint.

New on
LinuxJournal.com,
the White Paper

Library

www.linuxjournal.com/whitepapers

LJ218-June2012.indd 109 5/23/12 11:44 AM

INDEPTH

110 / JUNE 2012 / WWW.LINUXJOURNAL.COM

To list all of the snapshots on your
Btrfs mount:

EWUIV�VXEYROXPH�OLVW��ORFDO

Finally, to destroy a snapshot:

EWUIV�VXEYROXPH�GHVWUR\��ORFDO�VQDSVKRW

Now for a few other notes on Btrfs.
Just like ZFS, the “scrub” equivalent of
a file happens automatically each time
that file is accessed or read. However,
no on-line scrub of the entire filesystem
currently is available. You could,
however, use the find command to
simulate a scrub:

ÀQG��ORFDO��PRXQW��W\SH�I��H[HF�FDW�
^`
�!��GHY�QXOO�?�

Okay, and now to replicate the
functionality of the ZFS rotating snapshot
backup I demoed before:

2/'(67 CEWUIV�VXEYROXPH�OLVW��ORFDO_KHDG���_�DZN�
^SULQW��1)`
C�

EWUIV�VXEYROXPH�GHVWUR\��ORFDO��^2/'(67`�

UV\QF��DY���GHOHWH��KRPH��ORFDO�

EWUIV�VXEYROXPH�VQDSVKRW��ORFDO��ORFDO�VQDS�CGDWH���<�P�G��+��0��6C

Now you can wander through your
snapshot directory at will and copy data
as necessary.

Other Similarities
I’ve demonstrated some simple things
you can do with ZFS and Btrfs here.
Both filesystems have other features
implemented that I did not mention, such
as on-line compression using GZIP or LZO
algorithms. Both filesystems support user
and group quotas.

Conclusions
Personally, I have worked with ZFS longer
and consider it to be more stable than
Btrfs due to its heritage and inherited code
base from Solaris and the BSD UNIXes.
However, Btrfs is being worked on heavily
by multiple groups, and at some point, it’s
likely that the features of Btrfs will advance
further than those available in ZFS as more
distributions add support for it and as
more hackers get to play with it.

If you have pre-existing scripts or
filesystems from other OSes that use ZFS,
the ZFS on Linux Project is just what you
need to get these filesystems working
with your Linux OS efficiently and easily.

On the other hand, Btrfs offers the
possibility to convert an ext3 or ext4
filesystem to Btrfs, which is perfect if you
already have data in place on your disks.
This is a powerful tool on large storage
servers where downtime due to data
migration must be minimized.

Just like ZFS, the “scrub” equivalent of a file
happens automatically each time that file is
accessed or read.

LJ218-June2012.indd 110 5/23/12 11:44 AM

INDEPTH

I hope these examples and this quick
introduction inspire you to go out and look
at the new filesystems available and help
contribute feedback to the developers on
features you need. With your help, we
finally can break free from expensive RAID

hardware and start to think of disks as just
pools of storage to be used.Q

Howard Powell has been working with Linux and Solaris systems
for a decade at the University of Virginia Astronomy Department. He
loves filesystems, and you can reach him at bofh@virginia.edu.

Resources

ZFS on Linux Project: http://zfsonlinux.org

Best Practices Guide: http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

Btrfs: http://en.wikipedia.org/wiki/Btrfs

BTRFS Fu: http://www.funtoo.org/wiki/BTRFS_Fun

LINUX JOURNAL
now available
for the iPad and
iPhone at the
App Store.

linuxjournal.com/ios
For more information about advertising opportunities within Linux Journal iPhone, iPad and
Android apps, contact Rebecca Cassity at +1-713-344-1956 x2 or ads@linuxjournal.com.

LJ218-June2012.indd 111 5/23/12 11:44 AM

